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Urban-Target Recognition by Means of
Repeated Spaceborne SAR Images

Daniele Perissin and Alessandro Ferretti

Abstract—The relative low resolution (∼25 m × 5 m on the
ground) of spaceborne C-band synthetic aperture radar (SAR)
data as acquired, for example, by European Space Agency sensors
ERS and Envisat, can be significantly increased (up to subme-
ter precisions) by processing coherently long series of images.
Moreover, by analyzing the amplitude of the radar signal and by
exploiting polarization diversity, the main radar characteristics
of urban targets can be estimated, and a system for automatic
recognition of a set of scattering structures can be developed. In
this paper, we study the variation of the amplitude of the received
radar signal as a function of the acquisition geometry [normal
baseline and Doppler centroid (DC)] to retrieve the extension of
the targets in range and azimuth. The dependence of the radar
amplitude on temperature at the time of acquisition has been dis-
covered to be very useful to identify extended resonating targets.
Dihedrals are discriminated from specular or trihedral reflectors
through the phase of Envisat alternating polarization (AP) acqui-
sitions. By means of all gathered radar measurements, the bases
for the development of a system for the automatic recognition
of six main typologies of urban SAR targets (ground-level and
elevated backscatterers, simple and resonating dihedrals, poles
and trihedrals) have been laid. Radar data are then combined with
in situ surveys and aerial photos, allowing a first assessment of the
methodology in urban area.

Index Terms—Interferometry, polarimetry, radar target
recognition, synthetic aperture radar (SAR), urban areas.

I. INTRODUCTION

IN THE permanent scatterer (PS) technique, developed in
the late 1990s at Politecnico di Milano [1]–[3], the coherent

radar reflectors of a certain area of interest are exploited for
overcoming the difficulties related to conventional synthetic
aperture radar (SAR) interferometry (namely, phase decorre-
lation and atmospheric effects), achieving millimeter accuracy
in monitoring relative displacements of the targets. Even if
the PS technique has been an operational tool since 2000, the
physical nature of the targets is still a subject of investigation.
A good knowledge of the PS physical nature is a key step for a
correct interpretation of the measured deformation mechanism.
As an example, the phase of a dihedral formed by the ground
and a building wall does not change in the presence of a build-
ing’s slow subsidence, but it changes in case of ground subsi-
dence [4]. In the second instance, the classification of reflecting
structures behaving as PS allows an a priori identification of
the PSs looking at the structural details of the buildings. Finally,
knowing the PS’s physical nature allows foreseeing their elec-
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tromagnetic behavior under different acquisition geometries,
frequencies, and polarizations, and feasibility studies on the
integration of interferometric SAR multiple sensors can be
developed [5], [6].

Up to now, the characterization and recognition of single
radar targets have been tackled only by means of airborne
high-resolution SAR images in urban sites [7]. Examples of
high-resolution airborne SAR sensors are AER-II (FGAN) [8],
ESAR (DLR) [9], RAMSES (ONERA) [10], PAMIR (FGAN)
[11], mounting radars operating in different frequency bands
(X, C, S, L, and P). Mainly exploiting X-band, techniques
have been developed, e.g., for analyzing the different scattering
mechanisms [12], for distinguishing superimposed scattering
centers with polarimetric interferometric SAR data [13], and
for evaluating the dependence of urban mapping on aspect and
elevation angle [14]. These studies were applied, for example,
to building reconstruction [15], damage detection [16], and
grouping of regular point structures [17]. Building heights have
been extracted through high-resolution SAR interferometry
with different methodologies: shape from shadow [18], ma-
chine vision [19], stochastic geometry [20], and segmentation-
based algorithms [21], [22]. Building characterization has been
obtained using L-band polarimetric and interferometric SAR
data [23]. Target detection has been achieved by developing
despeckle filters [24], [25], jointly using radar image magnitude
and phase [26], optimizing the radiometric estimation with
spatial whitening filters [27]. Spatial distributed targets have
been detected by filtering polarimetric channels [28]; sublook
correlations have been proposed for ship detection [29]. Re-
cently, orientation and dielectric properties of individual co-
herent targets have been extracted from their polarimetric and
interferometric characteristics [30].

For what concerns target characterization, low-resolution
spaceborne SAR data (as acquired, for example, by ERS) have
been used up to now only for analyzing radiometric image
properties even in urban areas. Usually, the imaged scene is par-
titioned in different terrain classes exploiting empirical statisti-
cal models [31] of the backscatter characteristic of materials.
Details on the single building are not expected to be visible in
spaceborne SAR data as long as new-generation high-resolution
SAR systems are not operational (such as COSMO/SkyMed
[32] or TerraSAR-X [33]). Therefore, the analysis is restricted
to, for example, building-density estimates [34] or street recog-
nition [35]. As a further step, in [36], more acquisitions at
different times and view angles are shown, improving the
characterization of urban areas. Only in the last years, as the
European Space Agency (ESA) launched the new Envisat satel-
lite, which provides simultaneous dual-polarization capability,

0196-2892/$25.00 © 2007 IEEE



4044 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 12, DECEMBER 2007

attempts of investigating urban targets in C-band have been
made. Many works have been carried out on the combination
of ERS and Envisat data [5], [37]–[44], and in [45] and [46],
the polarization capability of Envisat has been exploited for
discerning the scattering mechanism of urban coherent targets.

In this paper, the first actual characterization of PSs in
C-band in urban areas by means of the ERS and Envisat data
is shown. The most common urban-target typologies (gratings,
roofs, poles, dihedrals, and trihedrals) have been identified,
and an algorithm for radar automatic recognition has been
developed. The results of the classification have been checked
by means of aerial photography and in situ surveys—thanks
to the submetric accuracy of target ground positioning of the
applied technique.

The paper is divided into two main parts. In Section II, we
analyze the theoretical basis and the processing chain that we
developed; Section III reports the results obtained in the urban
test site of Milan. Section II-A describes in more detail the gen-
eral structure of the work, and the following sections analyze
in-depth each single step: Section II-B—The complex SAR
data are modeled as a function of a set of target parameters;
Section II-C—The problem is inverted, searching for the tar-
get parameters; Section II-D—Based on the detected parame-
ters, target classification is implemented. Finally, Section III
shows a statistic of target parameters estimated from real data,
together with the results of the classification (Section III-A),
and describes the target typologies we identified through some
meaningful examples (Section III-B), thus bringing experimen-
tal proofs of the reliability of the proposed technique.

II. THEORETICAL FRAMEWORK

A. General Formulation

The basic idea that underlies this paper is that, by exploiting
many radar images acquired at different times with frequency,
look angle, and polarization diversity, system resolution can
be increased, and information on the physical nature of the
targets can be achieved. Apart from a precise estimation of
the 3-D position of the scatterer, the final goal of this paper
is the identification of its typology. Such objective is obtained
in two steps: 1) the estimate of a set of the target characteristics
(feature extraction) and 2) the assignment of a class to the target
based on the measured characteristics (labeling). The first step
is a classical inverse problem [47], whose complexity is mainly
due to the physical modeling of the acquisition process. The
second step can be implemented through a general classification
method. Again, here, the difficulty consists not in the classifi-
cation procedure but in the determination of the target classes
that can be separated using the data set under study.

The problem can be formalized as follows. Given NI com-
plex images si,k, with i = 1, . . . , NI of the same target k,
we search for the target typology Xk. First, we need to identify
the mutually independent degrees of freedom of the data set
(as, e.g., acquisition time and geometry), which are identified
by the vector Ω of length NΩ. Given the degrees of free-
dom, we expect to measure a set of the target characteristics
(as, e.g., dimensions and orientation) included in the vector Θ

of length NΘ. The complex radar signal si,k, relative to image
i and target k, can then be expressed as

si,k = f(Ωi,Θk) (2.1)

where f is a function (generally not linear) that maps the
parameter space Θ into the data space s through the model
space Ω. The first step of our algorithm consists in the problem-
inversion searching for the target characteristics Θ̂k that best
fit the data sk. Defining a specific norm ‖‖, the solution is
given by

Θ̂k = arg min
Θk

(
NI∑
i=1

‖si,k − f(Ωi,Θk)‖
)
. (2.2)

Since the radar signal is complex, the dimension of the data
space is 2NI . Thus, it is advisable that NΘ be � 2NI . In any
case, the goodness of fit can be quantified by evaluating the
residual ξk between data and model

ξk =
NI∑
i=1

∥∥∥si,k − f(Ωi, Θ̂k)
∥∥∥ . (2.3)

The problem is optimized when each degree of freedom is
exploited for resolving at least a target parameter: NΘ ≥ 2NΩ.

Once we get the estimate of the characteristic vector Θ̂k, the
target typology Xk is the output of the classification procedure
g: Θ → X . The distance in the NΘ −D space between the es-
timated class Xk and the point identified by Θ̂k is the reliability
of the classification result. In the following, we analyze in detail
the physical aspects of the problem.

B. Forward Modeling

As already mentioned in the previous sections, the core
purpose of this paper is to find a set of features that allows
the recognition of the target typology by means of spaceborne
SAR data in C-band. The problem is strictly dependent on the
degrees of freedom of the available data set. In general, the
wider the diversity of the illumination signal (e.g., more fre-
quencies, view angles, polarizations, etc.), the larger the amount
of information that can be extracted about the target. In this
analysis, we consider a data set of NI images acquired by the
ESA sensors ERS and Envisat. In particular, we take advantage
of the polarization capabilities of Envisat by exploiting also
VV–HH alternating polarization (AP) acquisitions.

Thus, we identified the degrees of freedom of the problem
in the variation of the following acquisition parameters with
respect to a reference image (hereafter called Master):

1) interferometric normal baseline;
2) DC frequency;
3) central frequency (different between ERS and Envisat);
4) polarization;
5) time;
6) local temperature at the acquisition time.
The first two parameters are related to the acquisition geom-

etry. Frequency and polarization characterize the illumination
radiation, while the time of the acquisition and the local
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Fig. 1. Radar acquisition geometry of Master image. r-axis: slant range direc-
tion; y-axis: flight direction (azimuth); x-axis: normal to the ry plane (cross-
slant range direction). (a) Point-wise target k with coordinates ∆r ,∆x ,∆y .
(b) Extended target lying in the origin of the Cartesian tern. The target is
modeled as a planar surface of extensions Lu × Lv oriented as vector n.

temperature can be exploited successfully to extract further
feature parameters useful for classification.

More precisely, we define the following reference system, as
shown in Fig. 1:

1) r-axis: slant range direction of the Master image;
2) y-axis: flight direction (azimuth) of the Master image;
3) x-axis: normal to the ry plane (cross-slant range

direction).
The Master sensor (index i = 0) illuminates the target with

an incidence angle θ0 (θ0 � 23◦ for ERS) and DC frequency
fDC0. Since the variations of the look angle are usually small
for multitemporal data acquired along the same nominal orbit,
the normal baseline Bn,i of image i is proportional to a cross-
track angle ∆θi

∆θi =
Bn,i
R0

(2.4)

where R0 is the sensor-to-target distance for the Master acqui-
sition (R0 � 840 km for ERS). Moreover, the DC frequency
difference ∆fDC,i of image i can be easily related to squint
angle variations ∆ψi [5], [48]

∆ψi =
λi

2δazPRF
∆fDC,i (2.5)

where λi is the wavelength, δaz is the azimuth sampling
interval, and PRF is the pulse repetition frequency.

Within the analyzed data set, N ′
I images are acquired at

frequency fi = f0, and N ′′
I images are obtained at frequency

fi = f0 − ∆f , where ∆f = 31 MHz is the frequency gap
between the ERS and Envisat sensors. Considering the ith
image, we call ti [days] its temporal baseline with respect to the
Master image and Ti [◦C] the temperature at its acquisition time
(again referred to the Master one). As long as the polarization
is concerned, since we suppose to use only Envisat VV–HH
AP acquisitions, we introduce the variable ηi to indicate if the
ith image has been acquired with VV pol (ηi = 0) or HH pol
(ηi = 1).

Thus, the vector characterizing the degrees of freedom of an
image of the data set is defined as follows:

Ω = [Bn, fDC, f, T, t, η]. (2.6)

1) Phase Analysis: We look now for the target characteris-
tics that can be observed under the variation of the previously
described acquisition parameters. For the sake of simplicity, we
will start our analysis by considering a pointwise target, i.e., an
object much smaller than the resolution cell (about 20 m × 5 m
on the ground for ERS). The target k has coordinates ∆rk,
∆xk, and ∆yk in the reference system shown in Fig. 1(a). In
general, the target will be modeled under the first-order Born
approximation as the sum of a high number of elementary point
targets with no mutual interaction on an absorbing background.

The pixel complex value1 of the ith image si,k in correspon-
dence of target k can be approximated as the sum of elementary
reflectivities along the range direction

si,k �
∫

σke
−j 4π

c firi,kdr (2.7)

where ri,k is the distance between the elementary reflectivities
and the sensor. If the target is pointwise, the pixel complex
value becomes

si,k � σke
−jφi,k (2.8)

where φi,k = (4π/c)firi,k. Assuming that all images have the
same origin of the slant range axes, as in Fig. 2(a) and (b),
the pixel phase can be rewritten, highlighting its variation with
respect to the Master acquisition (the interferometric phase)
φi,k = φ0,k + ∆φi,k.

As derived in [5], the interferometric phase that depends on
the acquisition geometry can be written as a function of the
normal baseline Bn,i and of the differences of central and DC
frequencies ∆fi and ∆fDC,i, respectively, with respect to the
Master one (c is the speed of light)

∆φgeoi,k = −4π
c

∆fi∆rk +
4πfiBn,i
cR0

∆xk + 2π
∆fDC,i

PRF
δyk
δaz

.

(2.9)

From (2.9), it is evident to recognize the dependence of the
interferometric phase on the 3-D location of the target (δyk is
its azimuth subpixel position). Thus, in general (when different
normal baselines and DC and carrier frequencies are present),
the interferometric phase can be exploited for deriving the
precise target 3-D coordinates, as already discussed in [49].

Assuming that the target k is affected by a motion (slow in
comparison with wavelength and repeat cycle), the interfero-
metric phase changes accordingly. We take into account two
main motion components: a trend linear with time [1] and a
seasonal component [3], [49] proportional to the temperature at
the time of the acquisition

∆φmovi,k =
4π
λi

Vkti +
4π
λi

KdT,kTi (2.10)

1In the following, with no loss of generality, we neglect the subpixel position
of the target, and we suppose that the radar target is in the center of the sampling
cell. The interested reader should refer to [49] for a detailed analysis of subpixel
positioning and its consequences on phase and amplitude of the received radar
signal.
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Fig. 2. (a), (b) Master acquisition geometry sections. (a) xr plane. (b) yr
plane. The slave slant range direction is reported, forming two angles with the
Master r-axis: (a) ∆θ in xr plane and (b) ∆ψ in yr plane. Different view
angles cause slightly different paths between sensor and target P localized by
the coordinates (x, y, z). Angle ∆θ causes a slant range path difference x∆θ;
angle ∆ψ generates y∆ψ. (c), (d) Target orientation in the Master acquisition
geometry. (c) α: Angle between x-axis and u-axis. (d) β angle between y-axis
and v-axis.

where Vk is the target velocity, and KdT,k is the proportionality
constant displacement to temperature of target k.

Finally, the interferometric phase depends also on the radar-
signal polarization. Here, we adopt a simplified model [45],
[51] for the polarimetric behavior of our target. The target is
expected to be visible both under VV and HH polarizations
(also in AP mode with reduced azimuth spectra [50]), and the
phase shift introduced by the different polarization is strictly
connected to the target scattering mechanism

∆φpoli,k = φpol,kηi. (2.11)

As well known in literature [51], the phase shift φpol,k between
VV and HH polarizations (ηi = 0 and ηi = 1, respectively) is
close to 0 for odd-bounce targets and close to π for even-bounce
targets.

Thus, if we consider the interferometric phase of targets of
small dimensions with respect to the resolution cell in our data
set ∆φi,k = ∆φgeoi,k + ∆φmovi,k + ∆φpoli,k , we are able to recover
a first set of physical parameters that can be used to identify
their 3-D position, the motion, as well as other information
on their scattering mechanism. We then get the following
characteristic vector Θphase for the targets under study:

Θphase = [∆r,∆x, δy, V,KdT , φpol]. (2.12)

2) Amplitude Analysis: By calculating the average ampli-
tude ak = (1/NI)

∑NI

i=1 |si,k| of the radar images (supposed

to be radiometrically corrected), in correspondence of the
pointwise target k (2.8), by means of the calibration constant
Kcal [52], we can evaluate the radar cross section RCSk =
a2kKcal [53], which is a useful information on the target phys-
ical nature. The scattering pattern of a pointwise target, in
fact, is expected to be constant as a function of the previously
described acquisition parameters, as evident from (2.8). A
distributed target, on the other side, can exhibit a more complex
behavior. In the following, we analyze the amplitude variation
of a distributed target as a function of the acquisition geometry,
frequency, temperature, and time by adopting a very simple but
effective model.

Acquisition Geometry: We first study the variations of the
monostatic RCS of a coherent radar target as a function of the
acquisition geometry (more precisely the direction of propaga-
tion of the incident wave, which is described by normal baseline
and DC frequency). The amplitude variations as a function of
the look angle can be ascribed to the physical dimensions of the
scattering object. In our discussion, we consider a very simple
model for the target: a flat surface (i.e., a mirror) in a low-clutter
environment. More precisely, we assign to the scatterer under
investigation the size of an equivalent mirror with the same
amplitude variations.

The target k, as in the pointwise case, is again modeled as
the sum of a high number of elementary point targets. This
time, the elementary scatterers are supposed to be uniformly
distributed on a planar surface of extension Lu × Lv oriented
as vector "n [Figs. 1(b) and 2(c)–(d)]. For the sake of simplicity,
the reflectivity value σ of the elementary point scatterers is
assumed to be constant σ = σ0. Here, we omit index k to
lighten the notation.

The complex value si of image i in correspondence of the
target can then be approximated as the sum of the elementary
reflectivities

si �
∫ ∫ ∫

σ(r, x, y)e−j
4π
λi
Ridrdxdy (2.13)

where Ri is the distance between the sensor in acquisition i
and the scatterers having coordinates r, x, and y in the local
reference system. More precisely

Ri = R0 + ri � R0 + r − x∆θi − y∆ψi (2.14)

where the last equation highlights the dependence of Ri on the
acquisition geometry (∆θi,∆ψi) of image i and the position
of each elementary scatterer P (x, y, r) [Fig. 2(a) and (b)]. To
keep mathematics as simple as possible, in (2.13), the system
impulse response has been supposed to be constant within the
resolution cell. The approximation does not impact significantly
on the final result since the target at hand is expected to be
small with respect to the resolution cell (the results shown in
Section III confirm the hypothesis).

Since the scatterers belong to a surface, (2.13) can be written
as a double integral. With reference to Fig. 2(c) and (d), we have
x = u cosα, y = v cosβ, and r = u sinα + v sinβ, where α is
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the angle between u and x axes, and β is the angle between v
and y axes. Equation (2.13) becomes

si � σ0e
−j 4π

λi
R0

Lv
2∫

−Lv
2

Lu
2∫

−Lu
2

e
−j 4π

λi
(u sinα+v sinβ−u∆θi cosα−v∆ψi cosβ)dudv.

(2.15)

Recalling the Fourier transform of a rectangle

∆
2∫

−∆
2

e−j2πξτdτ = ∆
sin(π∆ξ)
π∆ξ

= ∆sinc(∆ξ) (2.16)

the pixel amplitude ai = |si| of image i can be written as

ai � |σ0|LuLv

∣∣∣∣∣∣
sin
[
2π
λi
Lu(sinα− ∆θi cosα)

]
2π
λi
Lu(sinα− ∆θi cosα)

×
sin
[
2π
λi
Lv(sinβ − ∆ψi cosβ)

]
2π
λi
Lv(sinβ − ∆ψi cosβ)

∣∣∣∣∣∣ (2.17)

ai �
√

RCSmax

∣∣∣∣sinc
[

2
λi
Lx(θp − ∆θi)

]
× sinc

[
2
λi
Ly(ψp − ∆ψi)

]∣∣∣∣ . (2.18)

In (2.18), the variable RCSmax is the peak of the target RCS
at the operating frequency of the radar, and it depends on the
physical dimensions (Lu and Lv) and on the absolute value
of the reflectivity. The variations of the amplitude values as a
function of ∆θi and ∆ψi then depend on the target dimensions
projected in cross-slant range and azimuth (Lx = Lu cosα
and Ly = Lv cosβ), while the location of the maxima of the
cardinal sines is related to the target orientation (θp = tanα
and ψp = tanβ).

If we abstract (2.18) from the context of a mirror, we can
exploit it for describing a little portion of the scattering pattern
of a general target behaving as PS. If we consider RCSmax
to be independent of the dimensions Lx and Ly , the scatter-
ing pattern, e.g., of a corner reflector, can be approximated
by (2.18) with Lx = 0 and Ly = 0. In another condition, if
we separate the pattern peak position θp, ψp from the target
orientation α, β, (2.18) can be used for describing, for example,
a resonating structure (Bragg scattering) not orthogonal to the
line of sight (LOS) (e.g., a horizontal target α = θ0 resonating
in the direction θp).

Finally, (2.18) can be rewritten as a function of normal
baseline and DC variation by exploiting (2.4) and (2.5)

ai �
√

RCSmax

∣∣∣∣sinc
(

2Lx(Bn,i −Bnp)
R0λi

)
× sinc

[
Ly
δaz

(
∆fDC,i

PRF
− ∆fDCp

)]∣∣∣∣ (2.19)

where Bnp and ∆fDCp are the target pointing variables in
cross-slant range and azimuth in terms of normal baseline (in
meters) and PRF replicas of DC frequency (in hertz per PRF).

Acquisition Frequency: We consider now the dependence
of the amplitude values on the acquisition frequency. The
coherent combination of SAR data acquired with slightly dif-
ferent operating frequencies has been described in [5], where
ERS and Envisat images have been jointly exploited in a PS
analysis. Here, we study the impact on the amplitude of the
radar signal. Although this analysis will not be used to recover
further information on the target, it is useful for the sake of
completeness.

If image i is acquired with a frequency shift ∆fi with respect
to the Master acquisition fi = f0 + ∆fi, from (2.17), we obtain

ai � ε

∣∣∣∣sinc
[
2
c
Lu(f0 + ∆fi)(sinα− ∆θi cosα)

]∣∣∣∣ (2.20)

where c is the speed of light, and ε gathers all amplitude factors
independent of the frequency. If ∆fi � f0, we can neglect the
cross-product between frequency and angle changes ∆fi and
∆θi, respectively, obtaining

ai�ε

∣∣∣∣∣sinc
[
2
c
(f0Lu sinα−f0∆θiLu cosα+∆fiLu sinα)

]∣∣∣∣∣.
(2.21)

The argument of the sinc function in (2.21) is the sum
of three terms. The first one (f0Lu sinα) is independent of
frequency and look-angle changes: it identifies the position of
the peak of the sinc function in the parameter space ∆fi,∆θi,
and it depends on the mirror pointing angle α. The second
one (f0∆θiLu cosα) is a function of the view-angle difference
∆θi and the cross-slant range projection of the target length
Lx = Lu cosα. Finally, (fiLu sinα) takes into account the
different frequency and the target dimension projected on the
range direction.

Equation (2.21) states also an equivalence between baseline
(proportional to ∆θi) and frequency variation ∆fi. In fact, for a
flat surface, a frequency shift can be compensated by changing
the look angle accordingly: It is just another way to state the
wavenumber-shift principle [5], [54]

f0∆θiLu cosα = ∆fiLu sinα. (2.22)

In [5], the frequency–angle equivalence is exploited for ex-
plaining the PS survival rate, passing from ERS–ERS to
ERS–Envisat interferograms, under the hypothesis that sur-
face scatterers can be considered, on the average, horizontal
(α = θ0).

Temperature: The impact on the RCS of a thermal dila-
tion of the target due to different temperatures at the time of
acquisitions is mathematically similar to a frequency shift. In
fact, the expansion of an object of length L0 can be described,
as a first approximation, by a linear relationship

∆L = ζL0∆T. (2.23)
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Fig. 3. Histograms of estimated amplitude parameters for the 60 000 PSs
detected in Milan with coherence γ > 0.7. (a) Fitting index ξ̂fit (2.32).
(b) Temperature–amplitude coefficient K̂aT. About 7000 (12%) PSs with
|K̂aT| > 1.5 · 10−2 ◦C−1 can be recognized as backscattering targets.
(c) Birth date t̂ON. About 9000 (15%) PSs started working after the first
acquisition in the data set (May 16, 1992). (d) Death date t̂OFF. About 2000
(3%) PSs faded away during the 13-year time span before the last data-set image
(July 6, 2004). (e) Cross-slant range width L̂x. About 10 000 (17%) PSs have
cross-slant range width L̂x < 0.1 m. (f) Azimuth width L̂y . About 9000 (15%)
PSs have azimuth width L̂y < 0.1 m.

A temperature change ∆T causes a dilation ∆L. As well
known, the constant ζ is called the coefficient of linear expan-
sion and depends on the material affected by the temperature
variation. Given an object of length L0 = 2 m, with a thermal
expansion coefficient ζ = 2.5 · 10−5 ◦C−1 (aluminum) and a
temperature change of 30 ◦C, the thermal dilation is about
∆L = 1.5 mm.

In order to quantify the impact of a possible thermal dilation
of the target on the amplitude of the radar signal, we insert the
linear expansion formula (2.23) in our scattering model (2.17).
For the sake of simplicity, we analyze only the range dimension.
Equation (2.17) then becomes

ai � ε(Lu0 + ∆Lu,i)

∣∣∣∣∣sinc
[

2
λ

(Lu0 + ∆Lu,i)

×(sinα− ∆θi cosα)
]∣∣∣∣∣. (2.24)

It is easy to recognize that the change of scattering sur-
face due to the thermal dilation is not sufficient to create a
significant variation of the maximum of the sinc function:
ε(Lu0 + ∆Lu,i) � εLu0. However, the argument of the cardi-

nal sine can change, and the RCS is modulated accordingly.
Equation (2.24) can be rewritten as

ai�εLu0

∣∣∣∣∣sinc
[
2
λ

(Lu0 sinα+∆Lu,i sinα−Lu0∆θi cosα)
]∣∣∣∣∣

(2.25)

where we neglected the cross-product between the view-angle
and temperature changes. Equation (2.25) states that an increase
of size ∆Lu,i has an impact similar to a view-angle change
∆θi. A temperature variation ∆Ti modifies the target RCS
proportionally to the range projection of the target length
Lr0 = Lu0 sinα [similarly to a frequency shift in (2.21)]:
∆Lu,i sinα = ζ∆TiLr0. This implies that a mirror orthogonal
to the LOS (α = 0) is unaffected by temperature-dependent
amplitude variations. Targets with a significant seasonal vari-
ation of the RCS are usually distributed objects that scatter
a significant portion of the radar signal back to the sensor,
like periodic structures (Bragg scattering) not orthogonal to the
LOS, which resonate in the radar direction.

In order to quantify the thermal-dilation effect, we can com-
pare the last two terms in the sinc argument of (2.25)

ζ∆TiLu0 sinα = Lu0∆θi cosα. (2.26)

According to (2.26) for a horizontal target (α = θ0) with
ζ = 2.5 · 10−5 ◦C−1, 30 ◦C of temperature corresponds to about
270 m of normal baseline.

Empirically, rather than using a complex analytical formu-
lation, we found that a reasonable model can be obtained by
introducing a coefficient KaT of linear dependence between
amplitude and temperature and by adopting the following
simple equation describing the amplitude variation of a target
affected by a temperature change ∆T :

∆a = KaTa∆T. (2.27)

Consequently, our scattering model becomes

a′i = ai(1 −KaT∆Ti) (2.28)

where ai is given by (2.19), and ∆Ti is the tempera-
ture difference between image i and the Master one. The
amplitude–temperature coefficient KaT (per degree Celsius)
depends on the target material, dimensions, and orientation and
can be exploited for identifying resonating targets.

Time: In long temporal series of SAR data covering many
years, it can happen that a pixel exhibits PS behavior only
within a certain temporal window, i.e., in a subset of images.
In this case, abrupt changes in the time series of the RCS
values are usually clearly visible [55]. Focusing on man-made
structures and neglecting more complex variations of the RCS
values, we model the target life cycle by means of two variables:
tON and tOFF. More precisely, the amplitude model a′i of image
i (2.28) is multiplied by a boxcar function, so that the analysis
is focused on a subset of the multitemporal data set

a′′i = a′irecttON,tOFF(ti). (2.29)

In (2.29), ti is the temporal baseline of image i. In other words,
we suppose that the reflectivity values outside the “PS window”
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are negligible with respect to the RCS of the coherent scatterer
under different aspect angles.

Concluding the amplitude analysis, we can sum up in the
target characteristic vector Θamplitude the variables used for
describing our model

Θamp = [RCS, Lx, θp, Ly, ψp,KaT, tON, tOFF]. (2.30)

C. Inverse Problem

In the previous sections, we derived the vector Ωi of the
degrees of freedom of image i, the target characteristics
vector Θk of target k, and the model for the complex signal
si,k = ai,ke

jφi,k as a function of Ωi and Θk. In order to
estimate the target characteristics Θk, we consider separately
the amplitude and phase of the complex signal. For the phase
domain, we proceed as in the classical PS analysis by finding
the maximum of the periodogram (the temporal coherence) as
a function of Θphase,k [1]

γk =
1
NI

∣∣∣∣∣
NI∑
i=1

ej[∆φ
rec
i,k

−∆φi,k(Θphase,k)]
∣∣∣∣∣ (2.31)

where ∆φreci,k is the interferometric phase of the received signal.
The problem is nonlinear, and it can be solved either by system-
atically searching the parameter space for the desired solution
or by means of an optimization method such as the gradient.
We implemented the gradient method, taking into account an
a priori information on the analyzed data set. The temporal
coherence γk is an index of the reliability of the estimate.

For the amplitude domain, both the function to be optimized
and the algorithm to be applied for the parameter estimation
should be carefully selected. The cost function (i.e., the norm
adopted to describe the matching between the data and the
model) should take into account the presence of possible
statistical outliers due to clutter: Robust norms are preferable
with respect to standard LMS fitting. Moreover, since the
system is highly nonlinear, the computational burden should
be studied in detail since the area of interest can have hundreds
of thousands of PSs to be analyzed. We chose the following
objective function to be maximized for target k:

ξamp,k = 1 −
∑
i

∣∣∣areci,k − ai(Θamp,k)
∣∣∣∑

i

∣∣∣areci,k ∣∣∣ (2.32)

where areci,k are the received amplitude data, ai are the model
values as a function of the target characteristics Θamp,k, and
the sum is carried out over the multitemporal data set. The
fitting index ξamp,k is always lower than one and approaches
one in case of perfect agreement between the model and data.

Note that under the assumption of pointwise scatterers,
assuming amplitude values equal to a constant plus white
Gaussian noise areci,k = µk + ni(ni ∼ N(0, σ2)), the fitting in-
dex ξamp,k � 1 − σ/µk can be related to the amplitude stability
index SA,k = (µk/σ) [1]. Therefore, the fitting index (2.32)
can be thought of as an advanced measure (L1 rather than L2

TABLE I
SUMMARY OF THE CHARACTERISTICS OF THE SIX RECOGNIZED TARGET

TYPOLOGIES (+ MEANS GREATER, WHILE − MEANS LOWER). COLUMNS:
CROSS-SLANT RANGE WIDTH L̂x, AZIMUTH WIDTH L̂y , AP PHASE φ̂pol,

RADAR CROSS SECTION R̂CS, TEMPERATURE–AMPLITUDE COEFFICIENT

K̂aT, AND ELEVATION WITH RESPECT TO THE GROUND ĥ

norm is adopted) of amplitude stability that takes into account
the features of the multitemporal data set under study.

The final feature vector is then the result of a nonlinear
optimization of eight parameters

Θ̂amp,k = arg max(ξamp,k). (2.33)

Due to the complexity of the problem, no standard solution ex-
ists. We developed a genetic algorithm [56], but other strategies
can be adopted. Our algorithm has been adapted to get a reason-
able trade-off between processing speed and reliability, taking
into account prior information that can drive the optimization,
limiting the volume of the parameter space to be searched.
Finally, it is important to point out that the higher the dispersion
of baseline and DC values, the more reliable is the scattering
pattern estimate and, therefore, the amplitude analysis.

D. Classification and Recognition

The classification procedure g: Θ → X consists in the
assignment of a target class χk to the scatterer at hand,
which is based on the estimated characteristics Θ̂k =
[Θ̂phase,k, Θ̂amp,k]. In our paper, the real goal of such a task
is the identification of the scattering structures that can be
discerned from the estimated characteristic vector. The results
described in the following have been achieved through the
assiduous observation of the georeferenced radar data together
with high-resolution optical images and in situ surveys. Here,
we briefly report the main characteristics for each target class;
in the next section, we describe them through some meaningful
examples.
1) Target Typologies: From the feature vectors described

above and the analysis of real data sets, the six main target
typologies that have been identified are the following:

1) Resonating scatterers as floor metal gratings: targets
characterized by single-bounce scattering (φpol � 0),
ground elevation, and finite dimensions both in azimuth
and cross-slant range direction. Sensitivity to temperature
of RCS but not of LOS displacement. RCS values depen-
dent on their physical dimensions.

2) Roofs: targets characterized by single-bounce scattering
(φpol � 0), high elevation, and finite dimensions both in
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Fig. 4. Pie histograms of AP phase for different PS classes. (a) About 7500 PSs have AP phase around π(|φ̂pol| > 2.5 rad), and 10 000 PSs have AP phase

|φ̂pol| < 0.6 rad. (b) 15 000 PSs on the ground (elevation |ĥ| < 3 m) are principally dihedrals (AP-phase peak on π rad). (c) 20 000 PSs at high elevation

(ĥ > 5 m) have odd-bounce scattering system with high probability (AP-phase peak on 0 rad). (d) 7000 PSs with temperature–amplitude coefficient |K̂aT| >
1.5 · 10−2 ◦C−1 (backscatterers) have a neat prevalence of odd bounces (AP-phase peak on 0 rad). (e) North–south profile of Milan City after removing for the
low-pass topography. (f) Histogram of PS residual elevations (after removing for the low-pass topography) in Milan.
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TABLE II
CLASSIFICATION RESULT IN THE MILAN URBAN SITE. FOR EACH

TARGET TYPOLOGY, THE PERCENTAGE OF TARGETS RECOGNIZED

BELONGING TO IT IS REPORTED IN THE RIGHT COLUMN

azimuth and cross-slant range direction. Possible sensitiv-
ity of both LOS displacement and RCS with temperature.
RCS values dependent on their physical dimensions.

3) Simple dihedrals: targets characterized by double-bounce
scattering (φpol � π), ground elevation, negligible di-
mension in cross-slant range, and finite dimension in
azimuth. Negligible sensitivity of both LOS displacement
and RCS with temperature. RCS values usually high.

4) Resonating dihedrals as metal fences: targets charac-
terized by double-bounce scattering (φpol � π), ground
elevation, and finite dimensions both in azimuth and
cross-slant range direction. Sensitivity to temperature of
RCS but not of LOS displacement. Middle-low RCS
values.

5) Poles: targets characterized by double-bounce scattering
(φpol � π), ground elevation, and negligible dimension
in both cross-slant range and azimuth. Negligible sensi-
tivity of both LOS displacement and RCS with tempera-
ture. RCS values usually rather low.

6) Trihedrals: targets characterized by triple-bounce scatter-
ing (φpol � 0), ground elevation, and negligible dimen-
sion in both cross-slant range and azimuth. Negligible
sensitivity of both LOS displacement and RCS with tem-
perature. RCS values usually high.

Table I summarizes, with the already mentioned symbol
meaning, the characteristics of each kind of target.

The classification process can now be implemented by eval-
uating the distance in the NΘ −D space between the point
identified by Θ̂k and the aforementioned classes. The distance
can be properly adjusted by means of nonlinear functions in
order to find the best fit between the result and the observed
data. A good way to perform this task is the use of neural
networks, but a discussion on the optimization of this stage is
not the scope of the paper and will be the object of future efforts.

III. REAL-DATA ANALYSIS

In this section, we describe the results of the analysis on
the physical nature of the PSs in the Milan urban site: first
by reporting the statistics of the estimated parameters and then
by showing meaningful examples of recognized targets. The
exploited SAR data set is formed by N ′

I = 108 ERS images
and N ′′

I = 12 Envisat images acquired from 1992 to 2005.
The ERS image acquired on January 14, 1997 is selected as
the Master scene, and all the slave acquisitions are resam-

pled on the common Master grid. The test area covers about
400 km2. About 60 000 PSs with coherence γ > 0.7 [1] have
been detected in the Milan site.

A. Statistics and Classification Results

Fig. 3 shows the histograms of fitting index ε̂fit (a),
amplitude–temperature coefficient K̂aT (b), birth date t̂ON
(c), death date t̂OFF (d), range width L̂x (e), and azimuth
width L̂y (f) estimated in the Milan site. About 9000 (15%)
PSs started working after the first acquisition in the data set
(May 16, 1992), and about 2000 (3%) PSs faded away
during the 13 years time span before the last data-set im-
age (September 14, 2004). About 7000 (12%) PSs with
amplitude–temperature coefficient |k̂T| > 1.5 · 10−2 ◦C−1 can
be recognized as backscattering targets. From the histograms of
the physical dimensions, it is interesting to observe that point-
wise targets (peak at zero width) in cross-slant range and az-
imuth are neatly distinguished from the other scatterers. About
10 000 (17%) PSs have cross-slant range width L̂x < 0.1 m,
and about 9000 (15%) PSs have azimuth width L̂y < 0.1 m.
Only 1500 (2.5%) PSs are characterized by both dimensions
smaller than 0.1 m. Furthermore, it can be seen that the system
is much more selective in azimuth than in range (azimuth
widths are much smaller than cross-slant range widths).

Fig. 4 shows the polarimetric behavior of the coherent targets
in Milan as estimated from the autointerferometric phase of
an Envisat AP acquisition. Fig. 4(a) is the histogram of the
AP phase for the detected PSs. About 7000 PSs have AP
phase around π(|φ̂pol| > 2.5 rad) revealing a double-bounce
mechanism; 10 000 PSs have AP phase |φ̂pol| < 0.6 rad (odd-
bounce). The AP phase of the rest of PSs has a slight positive
prevalence. It is interesting to connect the AP phase with
two other estimated PS parameters: elevation and amplitude
temperature dependence. Fig. 4(e) shows the PS elevation with
respect to the ground in Milan City as a function of the north
coordinate, and Fig. 4(f) is the elevation distribution. As clearly
visible, the highest density of PSs in an urban site is at street
level [49]. Fig. 4(b) and (c) shows two AP-phase histograms
for two PS-elevation classes. PSs on the ground [Fig. 4(b)] with
elevation |ĥ| < 3 m (15 000 points) are principally dihedrals,
while at higher elevation with ĥ > 5 m (Fig. 4(c), 20 000 PSs),
odd bounces dominate (tiled roofs or corrugated iron roofs are
good backscatterers). By evaluating then the correlation be-
tween the AP phase and the temperature–amplitude coefficient
K̂aT in Fig. 4(d), we discover a neat prevalence of single-
bounce scatterers for the 7000 PSs with temperature–amplitude
coefficient |K̂aT| > 1.5 · 10−2 ◦C−1.

The results of the classification described in the previous
section and based on the estimated parameters are shown in
Table II. For each target typology previously described, the
percentage of Milan PSs recognized belonging to it is reported.
The typology with highest percentage is “roof” (50%); the
remaining classes are all more or less about 10%. The results
have been precisely georeferenced and compared with optical
data. However, even high-resolution airborne images are not
enough to allow a reliable cross-validation of the recognition
of the scattering typologies. To achieve the aim, we took
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Fig. 5. Example of PS recognized as a grating. The target lies on the ground (ĥ = 0 m), it is extended (L̂x = 6 m and L̂y = 6 m), the amplitude has a

temperature dependence (K̂aT = −1.10−2 ◦C−1), the peak RCS is high (R̂CS = 12 000 m2), and the amplitude estimate is reliable (ξ̂fit = 0.8). AP phase
not so significant (φ̂pol = 1.5 rad). The target has a good coherence (γ = 0.94), and the average deformation trend is slightly negative (V̂ = −1 mm/year).

advantage of the many pictures of detected targets collected
in situ. Some examples of the validation are reported in the next
section, together with a detailed description of the observed
target typologies. From the collected observations and by ana-
lyzing the reliability indexes, it can be stated that, whenever the
distance between the PS parameters and the estimated class is
small (30% of PSs in Milan), the accuracy of the classification
is higher than 90%.

B. Target Examples

Fig. 5 and the following report some examples of the target
typologies detected in the urban site of Milan. Each figure is
organized as follows. Up on the left, an aerial photo in the
Gauss–Boaga coordinate system is reported, together with the
PS position, which is identified by a black bordered white trian-
gle. Please note that perspective effects can shift the visualized
position of elevated objects (as roofs) from the actual one,
leading sometimes to a misunderstanding of the PS geolocation.
The radar is flying from north to southwest (descending pass),
and it is right-looking. Up on the right, the target type detected
by the system and a list of the estimated parameters are shown.
Down on the left, the amplitude series is plotted, together

with the reflectivity map, with a cross on the PS pixel. The
scattering pattern is plotted as a function of the following
(clockwise): normal baseline (in meters); temporal baseline
(in years); and DC frequency (in hertz per PRF). The measured
amplitude is plotted with a cross, while the estimated model is
represented with dots (circles). Finally, down on the right, the
target displacement (in millimeters) (with respect to a reference
point in Milan) is depicted as a function of the acquisition
date (+ ERS and × Envisat data). The displacement series has
been replicated at different ambiguities for a better visualization
(∧ ERS and v Envisat data).
1) Ground and Elevated Backscatterers: The most common

urban SAR targets are flat backscatterers (about 60% in Milan).
Among them, there are mirrors (very rare due to the strict
requirement on the pointing), resonating structures (as floor
metal gratings), roofs (tiled roofs and corrugated iron roofs),
and curved surfaces (as domes or shed roofs). Their main
characteristics are as follows: AP phase toward zero radians;
amplitude dependence on temperature (except rare mirrors
orthogonal to the LOS); dimensions of the equivalent mirror
higher than zero; and middle-high values of peak RCS (propor-
tional to the dimensions). Floor gratings can be distinguished
from roof-like scatterers by means of the elevation with respect
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Fig. 6. Example of PS recognized as a roof. The target is at ĥ = 38 m from the ground, very extended (L̂x = 14 m and L̂y = 6 m), with high radar return

(R̂CS = 47 000 m2), with low temperature dependence (k̂T = −0.4 · 10−2 ◦C−1), and with high amplitude reliability (ξ̂fit = 0.91). AP phase close to zero
(φ̂pol = 0.5 rad). In comparison with the grating of Fig. 5, the roof shows that the building has a subsidence rate (V̂ = −2 mm/year) higher than the surrounding
terrain (likely structural stabilization). Knowing the target scattering nature, the measured deformation can be correctly interpreted [4].

to the ground. In addition, general distributed flat scatterers
(as rough surfaces) are present but usually with low RCS and
low signal-to-noise ratio (SNR).

Fig. 5 shows a PS recognized by the system as a floor
grating. The target lies on the ground (ĥ = 0 m), it is extended
(L̂x = 6 m and L̂x = 6 m), the amplitude has a temperature
dependence (k̂T = −1 · 10−2 ◦C−1), the peak RCS is high
(R̂CS = 12 000 m2), and the amplitude estimate is reliable
(ε̂fit = 0.8). The AP phase in this case is not significant
(φpol = 1.5 rad). The target has a good coherence (γ = 0.94),
and the average deformation trend is slightly negative
(V̂ = −1 mm/year).

Fig. 6 shows a PS very close to the grating just seen,
but the system recognizes it as a roof. The target is at ĥ =
38 m from the ground, very extended (L̂x = 14 m and L̂y =
6 m), with high radar return (R̂CS = 47 000 m2), with low
temperature dependence (k̂T = −0.4 · 10−2 ◦C−1), and with
high amplitude reliability (ε̂fit = 0.91). The AP phase is, as
expected, close to zero (φ̂pol = 0.5 rad). The PS has a very
high coherence (γ = 0.97). What is really interesting in this
example is the target displacement. The roof has a northeast
location very similar to the grating in Fig. 5, but its displace-

ment is different. The grating shows that a slight subsidence
is affecting the ground with respect to the reference point in
Milan. The roof shows that the building has a subsidence rate
(V̂ = −2 mm/year) higher than the surrounding terrain (likely
structural stabilization). Moreover, the roof has a thermal dila-
tion proportional to the building height (see [49]). This example
highlights the importance of target identification and classifica-
tion for a correct interpretation of deformation phenomena.
2) Dihedrals: Dihedral-type scatterers are the second most

frequent target typology in urban sites (about 30% in Milan,
considering simple dihedrals, fences, and poles). The main
electromagnetic characteristic of a dihedral is the double-
bounce scattering mechanism. Such a property can be detected
by analyzing the polarimetric phase. A value of AP phase close
to π radians reveals the double-bounce nature of the target at
hand. Dielectric faces, however, can modify the phase delay
of the reflected signal. A simple dihedral is usually formed by
a building wall and the ground (low PS elevation), but there
are also elevated dihedrals consisting of building right-angled
structural details. A classical dihedral has the edge orthogonal
to the LOS, which is parallel to the flight direction. Neverthe-
less, also dihedrals not parallel to the azimuth direction have
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Fig. 7. Example of PS recognized as a dihedral. The target lies on the ground (ĥ = 1 m), and it has a quite high RCS (R̂CS = 16 000 m2). The model fits very
well the amplitude data (ξ̂fit = 0.91), the estimated cross-slant range width is null (L̂x = 0 m), and the azimuth width is high (L̂y = 5 m). The dihedral has

the edge perfectly perpendicular to the LOS (the estimated scattering pattern peak position as a function of DC-frequency difference is ∆̂fDCp = 0 Hz/PRF).

The phase series has a high coherence (γ = 0.95), and the associated displacement reveals a slight subsidence (V̂ = −1 mm/year). The AP information is in
accordance with the theory (AP phase φ̂pol = −2.4 rad). Dihedrals can be used for connecting data acquired from parallel tracks [6].

been observed. This is the case, e.g., of metal fences (vertical
structures consisting of periodic elements) that resonate in the
radar LOS and that interact with the terrain forming a double-
bounce system. We call this kind of scatterers “resonating
dihedrals.” Resonating dihedrals (about 7% in Milan) can be
distinguished from the classical ones by analyzing the depen-
dence of the amplitude of the received radar signal on the
temperature. A resonating target, in fact, as previously shown,
is sensitive to thermal dilation. The cross-slant range width of a
dihedral is theoretically zero (the scattering pattern is constant
along the normal baseline, and the target behaves as a pointwise
scatterer), but the possible presence of more scattering centers
on the building façade can sometimes cause an apparent nonnull
extension. The azimuth width of a dihedral is higher than zero,
and the square root of the RCS is proportional to it.

Fig. 7 shows a target example recognized by the system as
a classical dihedral. The target lies on the ground (ĥ = 1 m),
and it has a quite high RCS (R̂CS = 16 000 m2). The model
fits very well the amplitude data (ε̂fit = 0.91), the estimated
cross-slant range width is null (L̂x = 0 m), and the azimuth
width is high (L̂y = 5 m). The dihedral has the edge perfectly

perpendicular to the LOS (the estimated scattering pattern peak

position as a function of DC frequency difference is ∆̂fDCp =
0 Hz/PRF). The phase series has a high coherence (γ = 0.95),
and the associated displacement reveals a slight subsidence
(V̂ = −1 mm/year). The AP information is in accordance with
the theory (AP phase φ̂pol = −2.4 rad).

Dihedrals have a wide scattering pattern as a function of
normal baseline. This fact can be fruitfully exploited for con-
necting data coming from different parallel tracks or acquired
with different carrier frequencies (see [5] and [6]).
3) Poles: Poles are a particular case of dihedrals with cylin-

dric symmetry (about 10% in Milan). The azimuth width of
a pole is practically null, and this fact has a consequence
also on the RCS, which depends on its height and radius (not
detected by the system). Thus, poles have usually low RCS
and low SNR, and sometimes, they are not distinguished from
other noisy weak scatterers. Expected pole radar parameters are
the following: azimuth and range null dimensions; low RCS;
AP phase toward π radians; low elevation with respect to the
ground; and no temperature-dependent amplitude variation. A
pole must respect two main conditions in order to be observable
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Fig. 8. Example of PS recognized as a pole (in a car park). The target has a very low RCS (R̂CS = 160 m2), and consequently, the amplitude model estimate is
not reliable (ξ̂fit = 0.69). The AP phase, on the contrary, is reasonable (φ̂pol = 3.1 rad). As visible from the amplitude series as a function of time, the system
detects that the target appeared in year 1996. Poles can be seen from ascending and descending passes [49].

by the radar. It must lie on a scattering terrain, and it must
be perpendicular to the ground. Poles stretching tram wires in
Milan, for example, are not perfectly perpendicular, and they
are not seen by the satellite.

Fig. 8 shows a car park with different scattering poles (in
the aerial photo, they can be seen through their shadow). The
nearby picture is a pole as seen at a ground level. The target
has a very low RCS (R̂CS = 160 m2), and consequently, the
amplitude model estimate is not reliable (ε̂fit = 0.69). The
AP phase, on the contrary, is reasonable (φ̂pol = 3.1 rad). As
visible from the amplitude series as a function of time, the
system detects that the target appeared in year 1996.

Even if the poles are quite critical due to the low scattering
surface, they are very precious for connecting satellite ascend-
ing and descending passes. Such a property has been used
in [49] for creating an urban digital terrain model of Milan
City with tens of centimeters accuracy exploiting data acquired
by ERS-1, ERS-2, and Envisat from two descending tracks
(T208 and T480) and an ascending one (T487).
4) Trihedrals: The last target typology we analyze is the

trihedral (about 10% in Milan). Trihedrals are usually formed
by two right-angled building walls and the ground, as in a
courtyard internal angle. In this case, they are included among

the scatterer typologies at ground level. Trihedrals can be rarely
found at higher elevations, which are generated by appropri-
ately arranged structural details. Trihedrals appear as pointwise
in both cross-slant range and azimuth directions, but, differ-
ently from poles, they have high RCS. Furthermore, the AP
phase differentiates poles and trihedrals: The second ones are
characterized by a triple-bounce scattering system that rotates
in the same way horizontal and vertical polarized signals do
[45]. Finally, no trihedral amplitude variation as a function of
temperature has been observed.

Fig. 9 is an example of a courtyard internal angle act-
ing as a trihedral. The target has an enormous scattering
surface (R̂CS = 46 000 m2) and a very high phase stability
(γ = 0.98). Azimuth width is detected as the theory foresees
(L̂y = 0 m); range width is small but nonnull (L̂x = 3 m).
However, the amplitude model fitting index is not so high
as promised by the high RCS, and this suggests that many
other phenomena, which are neglected in our amplitude model,
can modify the received RCS. Finally, the AP phase is not
so far from the trihedral theoretical behavior (AP phase
φ̂pol = −0.7 rad).

Trihedrals are visible from parallel tracks as well as di-
hedrals, but they should be observable also under different
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Fig. 9. Example of PS recognized as a trihedral (courtyard internal angle). The target has an enormous scattering surface (R̂CS = 46 000 m2) and a very high
phase stability (γ = 0.98). Azimuth width is detected as the theory foresees (L̂y = 0 m); range width is small but nonnull (L̂x = 3 m). AP phase is not so far
from the trihedral theoretical behavior (AP phase). Trihedrals can be seen under slightly different azimuth angles.

azimuth angles (e.g., in images with different DC-frequency
nominal values, as passing from ERS to RADARSAT).

IV. CONCLUSION

In this paper, we tackle the problem of the physical nature
of SAR PSs, providing a method for target identification and
characterization by means of radar data. The three main radar
measurements that have been analyzed are as follows: precise
target position; target RCS as a function of the acquisition
parameters; and the phase of autointerferograms generated
from Envisat AP acquisitions. Amplitude data analysis, also ex-
ploiting high DCs as well as normal baseline values, was found
extremely informative for the characterization of radar targets.
A simple model was adopted for feature-parameter extraction.
Notwithstanding its simplicity, real-data analysis confirmed
the good potential of this approach for a first-order data
clustering. For the first time, resonating structures have been
identified through the amplitude temperature dependence. By
combining all the available information, we showed the bases
of an automatic algorithm for target recognition of six different
target typologies (ground-level single-bounce scatterers, roof-
level single-bounce scatterers, simple dihedrals, resonating

dihedrals, poles, and trihedrals). Radar data have been
combined with in situ surveys and aerial photos, allowing a
first assessment of this methodology in urban area. The physical
characterization of the targets allows a better understanding of
the deformation phenomena measured by the PS technique and
the identification of multisensor targets that can be observed by
different sensors under different acquisition geometries.
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